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Abstract: Brain computer interfaces are devices that 
enable people to communicate using their brain activity, 
being useful for those suffering with neurodegenerative 
diseases. Many BCI use the P300 evoked response. 
However, the detection of this potential is very difficult, 
since it presents low signal-to-noise ratio. This paper 
studies which time features present in the 
electroencephalogram can improve the detection rates 
of this response. For this purpose, logistic regression 
models were used to assess the significance of the 
following features for P300 representation: most 
positive peak, most negative peak, latencies of these 
peaks, area and RMS value between them. These 
parameters were evaluated on averages of 600 ms 
windows that could or not contain the potential. The 
results showed that positive peak, RMS value and both 
latencies significantly improve P300 detection rates. 
Keywords: P300, brain-computer interface, feature 
selection, logistical regression. 
 
Introduction 
 

Brain computer interfaces (BCI) are defined as 
communication systems that a person can use to send 
messages or commands through alternative pathways 
different from those offered by muscles and peripheral 
nerves [1]. 

BCI are possible solutions for people that suffer with 
neurodegenerative diseases such as: amyotrophic lateral 
sclerosis, brainstem stroke, brain or spinal cord injury, 
cerebral palsy and others [1]. Especially for severally 
disabled subjects, BCI can enhance autonomy and 
promote improvements on life quality. Recent 
applications of BCI include prosthesis control, 
motorized wheelchairs and home automation [2]. 

Many BCI are based on the P300 evoked response 
potential (ERP) [3] (Figure 1), which is characterized by 
a positive voltage peak ranging from 2 to 5μV at about 
300ms to 600ms post-stimulus and can be recorded at 
the scalp by means of electroencephalogram (EEG). It 
appears with better signal-to-noise ratio (SNR) at Fz, Cz 
and Pz derivations [4] and arises as a response to visual, 
somatosensory or auditory stimuli, when a significant 
target stimulus is presented infrequently among non-
target stimuli, in a random way. 

When compared to other assistive technology 
devices, such as those that use muscular responses like 

eye movement, P300 based BCI present lower 
communication rates. However they are a useful 
alternative, mainly when the stage of motor disability 
makes the use of devices based on biosignals with better 
SNR impossible [5]. 

Detecting P300 is a big challenge, since its pattern is 
masked by spontaneous EEG. An important step for 
detecting patterns and classifying data is to perform 
feature extraction and selection [6]. 

For this reason, many P300 time features [7, 8, 9] 
have been used in order to detect which EEG signal 
averages (coherent means) contain the P300, such as 
those listed in Table 1. 

However, few works focused on identifying the best 
features to distinguish between the two average classes: 
P300 and spontaneous EEG average (target and non-
target).  

Hence, the objective of this work is identifying time 
features that significantly improve the probability of 
P300 detection. This goal was accomplished by 
performing statistical tests on the coefficients of logistic 
regression models. This strategy can be used to select 
which features should be used as inputs of classification 
algorithms in future works. 
 
Modeling Binary Response Variables 
 

Logistic Regression Models – The response 
variable considered can assume only two classes: target 
and non-target. To describe the behavior of this kind of 
variable, logistic regression models are used, whose 
response function is defined as [10]: 

 

	
	

	
,		              (1) 

 

where  is the expected value of the response 
variable ,  is the explanatory variable (feature),  is 
the coefficient associated with the feature. 

Adding multiple explanatory variables, Equation 1 
becomes: 

 

	
	 	 ⋯ 	              (2) 

 

Equation 2 models the relationship between  and 
the explanatory variables	 . The expected value can be 
used as a probability score in order to predict the 
outcome of the response variable [11].  
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Figure 1: P300 signal average.  
 
Table 1: Features of interest 
 
Feature Description 
Most Positive 
Peak (PPeak) 

The most positive peak in the average. 

Most Negative 
Peak (NPeak) 

The most negative peak in the average. 

Area Under Peaks 
(Area) 

Value of the area under the curve defined from 
NPeak to PPeak. 

RMS Value RMS for the curve from NPeak to PPeak. 

Positive Peak 
Latency (PLat) 

Factor that assumes values from 1 to 6 relative 
to different ranges of time occurrence of PPeak 
in the average. Thus, 1corresponds to 
0...100ms, 2 to 100…200ms, and so on. 

Negative Peak 
Latency (NLat) 

Idem PLat description, but for the NPeak. 

 
Tests on Individual Model Coefficients – With the 

model described by Equation 2, one may want to find 
out the statistical significance of each coefficient , 
leading to the following hypothesis: 
 

:	 0 
:	 0                                (3) 

 

To test the above hypothesis, a t-like statistic called 
the Wald statistic can be derived [8]: 
 

	 ,                            (4) 
 

which has a standard normal reference distribution. 
It can be seen that, as the standard error grows,  

will tend to zero. So, a coefficient must have a low 
standard error (in comparison to its absolute value) in 
order to be statistically significant. 

Thus, tests on  may be used to assess the statistical 
significance of each feature, providing information on 
how it contributes to the ability of the model to 
distinguish between classes. The combination of 
features was tested by multiplying the corresponding 
model coefficients. 
 
Methodology 
 

Data Collection – The experiment was executed 
using the database provided by [12], with data from 24 
healthy volunteers, 16 men and 8 women, aged between 
19 and 25 years. 

The EEG was recorded with the reference on the 
right earlobe and with ground lead at the right mastoid. 
Signals were band-filtered between 0.1Hz and 60Hz, 
and sampled at 256Hz. 

For each volunteer, 21 symbols were presented, 
using the oddball paradigm [9] for P300 elicitation. The 
symbols are disposed in a 6x6 matrix (Figure 2). Each 
row and each column is intensified during 100 ms and 
appears blank for 75 ms, with the order of 
intensification being randomized. When a row or 
column that contains the desired symbol is intensified, 
P300 elicitation is expected to occur [5, 7]. As such, for 
each desired symbol there are twelve averages of rows 
and columns: two of them contain the P300 (target 
stimuli) and ten are spontaneous EEG (non-target 
stimuli). 

Two averages of target and two of non-target stimuli 
(picked up randomly) from Cz derivation were selected 
for each desired symbol. The features listed in Table 1 
were extracted from these averages. 

 

 
 

Figure 2: Row-column paradigm for P300 elicitation. 
 
Experimental Design – A logistic regression model 

was used to predict the probability that the P300 
occurred in the selected average window. This approach 
allowed identifying if changes on feature (Table 1) 
values would improve the detection rates of P300. 

If a given feature does not significantly alter the 
probability of P300 occurrence in the average, the 
corresponding model’s coefficient will fail its Wald 
statistic tests. Therefore, the hypotheses defined for the 
experiment are those described by Equation 3, which 
were tested with a confidence interval of 0.01. 

The generated model was also used to analyze how 
the interaction between features changes the detection 
rates of P300. This was accomplished by fixing the 
values of all but one of the features and then predicting 
how the probability of P300 detection changes 
accordingly to the feature that was not fixed. 
 
Results 
 

The statistical test showed that PPeak (p<0.007), 
RMS value (p<0.003), PLat4 (p<0.001), PLat6 (p<0.003) 
and NLat4 (p<0.002) are significant with a 0.01 
confidence interval, when each parameter is considered 
individually. 
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Figure 3 shows the influence of PPeak on P300 
detection rates. The solid lines represent the probability 
scores as the value of this feature varies, for each level 
of PLat and NLat. The translucent shadows around each 
line are the confidence intervals of probability scores. 
Hence, the narrower the shadow (smaller confidence 
interval), the more significant is the feature. 

PPeak, for example, is a good predictor of P300 
occurrence, presenting a significant interaction (p<0.001) 
for PLat = 3, 4, 5 and 6 (latency range from 200 to 
500 ms). This is evidenced by the fact that these curves 
(Figure 3, top) present high detection probability scores 
with narrow confidence intervals for PPeak values over 
7 μV. 

The interaction with NLat (Figure 3, bottom) was 
significant (p<0.001) only when it occurred in the 
interval between 300 and 400 ms, which corresponds to 
NLat = 4.  

 

 

 
 

Figure 3: Probability of P300 detection when PPeak 
varies for different ranges of PLat (top) and NLat 
(bottom). 

 
NPeak (Figure 4, top) has a strong interaction 

(p < 0,001) for PLat = 3, 4 and 5, since for values under 
-10 μV, detection probability scores over 75% are 
achieved.  

However, the interaction between NPeak and NLat 
was not significant (Figure 4, bottom). 

The Area presented no significance when considered 
individually. However, a significant interaction 
(p < 0.01) was found for PLat = 3 and 4 (Figure 5, top). 
No significant interaction with NLat was found 
(Figure 5, bottom). 

The interaction between the RMS value and the 
Positive Latency was significant (p < 0.001) for PLat =3 
and 4 (Figure 6, top), but the interaction with NLat was 
not significant (Figure 6, bottom). 

 

 
 
Figure 4: Probability of P300 detection when NPeak 

varies for different ranges of PLat (top) and NLat 
(bottom). 
 

 

 
 

Figure 5: Probability of P300 detection when Area 
varies for different ranges of PLat (top) and NLat 
(bottom). 

 
Discussion 
 

The P300 is primarily characterized by a positive 
peak [4], which is reflected by the significance of PPeak 
as a predictor of its occurrence. This result corroborates 
with the use of this feature in other works [7, 9].  

Because it measures the magnitude of a varying 
quantity, the RMS value may reveal that target stimuli 
presents greater spread from zero than non-target ones. 
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Figure 6: Probability of P300 detection when RMS 
varies for different ranges of PLat (top) and NLat 
(bottom). 

 
The significance found on this feature shows that it 

may improve the distinction between the two classes, 
and can be used as an input of classification algorithms. 

Area calculation sums the parts above and subtracts 
the parts below zero. As P300 (Figure 1) presents 
positive and negative peaks for both classes, the area 
calculation can tend to low values for both target and 
non-target averages. 

This feature has been previously used in other works 
[7, 8], but our results suggest it may not be suitable for 
differentiating between P300 and spontaneous EEG. 

P300 doesn’t present a prominent negative peak, so 
this feature alone may not be representative of target 
stimuli, justifying its lack of significance. 

Besides the amplitude of the positive peak, P300 is 
also characterized by the latency at which this peak 
occurs, at about 300 ms post-stimulus [4]. 

The interaction between all features with PLat and 
NLat provides information about the relationship 
between magnitude and timing of signals. Its 
significance shows that the use of spatiotemporal filters, 
such as reported by [2], is a good way to differentiate 
between classes. 

Although Area and NPeak may not aid to identify 
target stimuli, they can help to identify non-target ones. 
This may justify the significance of the interaction 
between these features with PLat and NLat. 
 
Conclusion 
 

In this paper, logistic regression models were used to 
identify which time features improve P300 detection 
rates. This was carried out by performing statistical tests 
on the model’s coefficients. The value of the most 
positive peak and the RMS value between peaks were 
found to be good predictors of P300 occurrence, which 

can be justified by the differences between P300 and 
spontaneous EEG waveforms. 

The interaction between factors was also found to 
significantly improve the detection rates of P300. This 
may be justified because they provide information on 
the relationship between amplitude and time of 
potentials, helping to differentiate between the classes.  

Finally, we conclude that logistic regression models 
can be used to perform feature selection for P300 
detection improvement. 
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