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Abstract: This work aims at investigating the existence 
of variation in the anterior cortical response, more 
specifically in the alpha band signal of the frontal area, 
to evaluate the differences in power spectrum between 
contra-lateral electrodes F3 and F3 in order to study 
the passive response caused by performing repetitive 
tasks in a BCI. Thus, statistical spectral power 
evaluation of alpha rhythms is executed before and after 
the user performing a specific BCI repetitive task. 
Visual stimuli (SSVEP) are used during the user's 
electroencephalographic recording. The sampling dis-
tribution of Spectral F test and Wilcoxon test are here 
investigated. 
Keywords: BCI, SSVEP, Reactive-BCI, Passive-BCI, 
Hybrid-BCI, Spectral f Test, Wilcoxon Test. 
 
Introduction 
 

A Brain-Computer Interface (BCI) provides a direct 
connection between the user’s brain signals and a 
computer, generating an alternative channel of 
communication that does not involve the traditional way 
as muscles and nerves [1]. Hence, a BCI defines a new 
input modality for human-machine interaction (HMI), 
which could substitute or add up to other input 
modalities like manual input. BCIs can be categorized 
as active, reactive and passive [2]. Active-BCIs have 
outputs derived from brain activity, which is directly 
and consciously controlled by the user, therefore being 
independent of external events [3]. Reactive-BCIs have 
outputs derived from brain activity arising in reaction to 
external stimulation, which is indirectly modulated by 
the user. And Passive-BCIs have outputs derived from 
implicit information on the actual user mental state, 
which arises arbitrarily without the purpose of voluntary 
control. The first two categories derive their outputs for 
controlling an application, and the last one derive its 
output to improve the human-environment interaction or 
human-machine interaction. 

A Reactive-BCI is given, for example, by a BCI 
based on steady-state visual evoked response (SSVEP). 
Visual evoked potentials, that occur involuntarily in 
response to visual stimuli, are measured by recording 
electroencephalographic (EEG) signals over the brain 
occipital region. SSVEP is a periodic response elicited 
by flickering visual stimuli, which have the same 
fundamental frequency as that of the flickering stimuli 

as well as its harmonics. These signals are processed, 
classified and translated into control commands [4]. 
However, flickering stimuli could cause a stress-related 
emotional state or loss of attention, as reported in [5]. 
Consequently, stress decreases the performance of a 
SSVEP-BCI. 

In order to improve the usability of this technology, 
users can perform simultaneous or sequential tasks 
employing systems based on two or more BCI systems. 
A hybrid BCI is assembled by a collection of systems 
that work together to provide a robust communication 
pathway between the human brain and a computer [6], 
[7]. A hybrid BCI based on two different ones could 
combines active, reactive, and passive BCIs. A specific 
passive-BCI based on emotional components 
identification could be combined with the reactive-BCI 
based on SSVEP, because not only voluntary self-
regulated signals can be used as input, but also 
involuntary signals might tell us something about the 
state of the BCI user, e.g. the emotional and cognitive 
state [8]. Involuntary responses (also referred to as 
passive signals) can be extracted and used to adapt the 
recognition algorithms of a BCI. 

Emotions can be defined as a subjective, conscious 
experience characterized primarily by psycho-
physiological expressions, biological reactions, and 
mental state [9]. Passive-BCI based on emotional 
components is a recent approach that fuses BCI 
technology with cognitive monitoring, providing the 
computer information about the user’s intentions, the 
situational interpretations and mainly the emotional 
state. Affective computing studies techniques that 
recognize, interpret, and process human emotions [10]. 
Frontal cortex has provided evidence that greater right 
frontal activity seems to be more highly related to 
negative emotional states. Thus, high alpha band power 
in the right hemisphere is associated with negative 
emotional states while high power in the left hemisphere 
is associated with positive emotional states [11]. This 
asymmetry can be computed by subtracting the alpha 
power from of left hemisphere and right hemisphere.  

Figure 1 shows a hybrid-BCI that combines a 
Reactive-BCI and Passive-BCI sequentially. The 
Reactive BCI based on SSVEP detects the elicited 
evoked potential from EEG signals registered at 
occipital electrodes, and the passive-BCI identifies 
emotional components of user's mental state from EEG 
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signals on the frontal brain region. Asymmetry of the 
frontal cortex associated with a specific emotional state 
can make changes in detection settings of SSVEP in 
order to maintain the BCI accuracy.  

Because of spectral tests are being used to 
investigate the existence of cortical changes in motor 
imagery [12] and SSVEP [13], the present work aims at 
investigating the existence of variation in the anterior 
cortical response, more specifically in the alpha band 
signal of the frontal area, to evaluate the differences in 
power spectrum between contralateral electrodes F3 and 
F4. Since stress is one of the emotional state of the 
subject caused by repetitive tasks, statistical spectral 
power evaluation in the alpha rhythm is realized using 
electroencephalographic (EEG) signals recorded before 
and after the user performed a repetitive task. For that, 
the user is sit in front of SSVEP stimuli during the EEG 
recording. For adequate quantitative evaluation of the 
emotional effects, changes on frontal areas should be 
assessed on a statistical basis. With this aim, the 
sampling distribution of spectral F test and Wilcoxon 
test is here investigated. 
 
Spectral Analysis 
 

In rhythm modulation-based BCIs, the input of a 
BCI system are the modulated brain rhythms with 
embedded control intentions. Brain rhythm modulation 
is realized by executing task-related activities, e.g., 
gazing to one of several visual stimuli. Demodulation of 
brain rhythms can extract the embedded information, 
which is converted into a control signal. The brain 
rhythm modulations could be sorted into the following 
three classes: power modulation, frequency modulation, 
and phase modulation. For a signal ( )s t  its analytical 

signal is a complex function ˆ( ) ( ) ( )g t s t js t  , where 

ˆ( )s t  , that is the Hilbert transform of ( )s t , is defined as: 
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where ˆ ( )G f  is the Hilbert transform of ( )g t , and 
ˆ ( )*G f  denotes the complex conjugate of ˆ ( )G f . Power 

spectrum computing by this method has no negative 
frequencies values. After subdividing each experiment 
into M epochs, the power spectral density (PSD) is then 

estimated using the Bartlett periodogram technique with 
hamming window, denoted by: 
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where ˆ ( )BP f  is the PSD of the epoch, M is the number 

of epochs of x[n], and ( ) ( )xxP m f  is the estimated 

spectrum of m-th segment. The Spectral F test (SFT) for 
the discrete-time signals y[k] (here assumed to represent 
an EEG during or after emotional stimulation) and x[k] 
(EEG signal immediately before stimulation) can be 
defined as: 
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For M = Mx = My the SFT is expressed as ˆ ( )xy f . 

Assuming that x[k] and y[k] have Gaussian 
distributions, it reflects the null hypothesis H0, under 
which is known to be distributed as: 

0 2 ,2
ˆ ( ) | ~ ,yx H M Mf F    (5) 

where F2M,2M is the Fisher distribution with 2M and 2M 
degrees of freedom. Thus, for a given significance level, 
if it is greater than the critical value of the F-
distribution, the hypothesis of absence of cortical 
response can be rejected. Figure 2 shows a block 
diagram illustrating the computing sequence. 
 

 
Figure 2. block diagram of the computing sequence. 

 
Materials and Methods 

 
One healthy subject without any experience with 

BCI experiments were considered in this preliminary 
study. The experiment was conducted with the 
understanding and written consent of the subject. This 
study was approved by the research ethics committee of 
the Federal University of Espirito Santo (Brazil). EEG 
signals from 14 electrodes (Fz, F3, F4, C3, Cz, C4, T7, 
T8, P3, P4, Pz, Oz, O1, and O2) were registered. The 
ground electrode was positioned on the user forehead 
and two reference electrodes were adopted; the first one 
was placed at FCz and the second one placed between 
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Pz and CPz. An modified EEG equipment based on 
Emotiv Epoc equipment was used. It has 14-channel 
wireless with 128 Hz sampling rate and 0.16-45 Hz 
band-pass. The subject was instructed to sit with his 
hands resting on his legs, to stay as still as possible and 
to observe the center of the screen. A LCD monitor was 
placed on a table 70 cm away from the subject.  The 
experiment was divided in three parts of 200 seconds 
each one. In the first and third parts the subject realized 
the SSVEP task, in which an alternating checkerboard 
was displayed in the middle of the monitor. In the 
second part the subject was asked to perform a 
repetitive task (rise his index finger). EEG recorded 
only during the SSVEP tasks were sectioned into 5-
seconds epochs. An automatic trial rejection counted the 
number of contaminated samples in each trial to provide 
the percentage of samples with artifacts or outliers. 

Signals from O1 and O2 electrodes were used to 
verify the SSVEP responses, and channels P3, P4, Pz, 
Oz, O1, and, O2 were employed to perform common 
average reference (CAR) spatial filtering at the anterior 
region of the brain. Next, they were filtered employing 
an elliptic band-pass (4 Hz - 50 Hz) filter. On the other 
hand, signals from F3 and F4 were used to perform the 
spectral analysis of the alpha rhythm. Previously, CAR 
filtering at the anterior region of the brain was 
performed using channels Fz, F3, F4, C3 and, Cz. After, 
EEG signals were filtered using an equiripple band-pass 
(8 - 12 Hz) filter. The power spectra of the EEG before 
and after the repetitive task was estimated using the 
periodogram of Bartlett based on the Hilbert transform 
(frequency resolution of 0.5 Hz). Spectral F test was 
computed using the power spectrum of EEG signals 
recorded before and after the repetitive task in the 
numerator and denominator of expression (1), 
respectively. The critical value for the null hypothesis of 
absence of response was determined by setting a 5% 
percentage of significance (α = 0.05). Two experiments 
were realized; in the first the frequency of alternating 
checkerboard was 5.4 Hz, and in the second, that 
frequency was 8.0 Hz. Also, the Wilcoxon (paired, non-
parametric) test (α = 0.05) was used to evaluate the 
differences in power spectrum between the same 
derivation (F3, F4, and F3-F4) before and after the 
repetitive task, by comparing their medians. 

 
Results 

 
Results obtained by comparing the power density in 

the alpha band between EEG captured before and after 
the repetitive task are presented in this section. Figure 2 
shows the energy spectral density computed by using 
Hilbert transform of M = 10 epochs (gray curves) and 
the power spectral density estimated using the Bartlett 
periodogram technique (black curves). Figure 2(a) and 
Figure 2(b) corresponds to SSVEP tasks performed 
before and after performing the repetitive task, 
respectively. Figure 3 shows the SFT (frequency 
resolution of 0.5 Hz). Figure 3(a) corresponds to the 
checkerboard frequency of 6.4 Hz for Mx = 10 and My = 

14 epochs acquired before and after the repetitive task, 
respectively. 

The critical value SFTcritic ∼ F(2Mx ,2My ,α=0.05) = 2.03 is 
shown in the horizontal doted lines. It can be noticed in 
both F3 and F4 separated electrodes that SFT did not 
exceed the critical value at the alpha band.  However,  in  
the case of the derivation F3-F4, the response exceeded 
the critical value, which is in accordance with the 
literature on negative emotions and EEG, since the 
frontal cortex asymmetry has provided evidence that 
greater right frontal activity seems to be more highly 
related to negative emotional states. Figure 3(b) 
corresponds to checkerboard frequency of 8.0 Hz. In 
this case, the SFT critic was 1.68, and F3 and F4 also 
did not reach this critic value. On the other hand, the 
bipolar F3-F4 derivation arises the threshold. In F3 and 
F4 electrodes, no statistical difference was found 
between signals recorded before and after the repetitive 
task. However, the difference is clearer in F3-F4 
derivation. Since the EEG power can hardly be 
described as a Gaussian distribution, the Wilcoxon 
(paired, non-parametric) test (α = 0.05) was used to 

 
Figure 2: Barlett periodogram for F3, F4 and F3-F4 derivations. (a) 
Before the repetitive task. (b) After the repetitive task.  
 

 

(a)   (b) 
Figure 3. Spectral F test for F3, F4 and F3-F4 derivations. (a) 
Experiment of 6.4 Hz: Mx = 10, My = 14, α = 0.05; (b) Experiment 
of 8.0 Hz: Mx = 13, My = 11, α = 0.05. 
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evaluate the differences in power spectrum between the 
same derivation (F3, F4, and F3-F4) before and after the 
repetitive task, by comparing their medians. Table 1 
shows the results for all analysis with p-values obtained 
in Wilcoxon tests. The comparison between sequences 
taken before and after the repetitive task reveals 
significant difference only for in F3-F4 derivation (p < 
0.05). 

Table 1. Wilcoxon test for electrodes F3 and F4 , and for F3-F4 
derivation. 
 

In order to check that the BCI based on SSVEP is 
working properly, Figure 4 shows the normalized 
amplitude spectra of the average of these trials when the 
user is stimulated with 8.0 Hz of flickering frequency. 
The curves were generated using the SSVEP trials, 
plotted with frequency at the X axis and amplitude at the 
Y axis. The three different lines plotted represent signals 
for O1, O2 and Oz electrodes. 
 

 
Figure 4. Normalized amplitude spectra SSVEP responses for 
electrodes Oz, O1 and, O2. 
 
Conclusion 

 
For adequate quantitative evaluation of the 

emotional effects, changes on frontal areas were 
assessed on a statistical basis. The application of 
Spectral F-Test allows detecting energy variations at 
electrodes F3 and F4. Moreover, using alternative 
hypothesis of the presence of response and 95% 
confidence interval makes possible to apply a statistical 
technique as an indicator of the strength of energy 
variation. Thus, statistical tests can be used to compare 
the strength of responses in the same electrode but in 
different time. Results showed that, although no 
significant variations was found in aislate F3 and F4 
electrodes, the F3-F4 derivation shows variation before 
and after the user performed the repetitive task. In this 
sense, the next step of this work is to make a 
quantitative analysis of asymmetry for more volunteers, 
in order to obtain a unidimensional value to propose a 
linear equation that relates this index to the BCI based 
on SSVEP settings. Although results is from just one 
individual, they are promising because show that 
passive-BCIs could improve the success rate despite of 
the user's emotional states, such as stress. Tests with a 

larger data corpus will be necessary to confirm those 
results. 
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