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Abstract: Models of the heart rate variability (HRV), 
and particularly of the respiratory contribution, called 
respiratory sinus arrhythmia (RSA) are usually either 
built in the frequency domain or as a discrete-time dy-
namic system. Nevertheless, the underlying mechanisms 
and signals involved are continuous in time, for exam-
ple changes in the membrane potentials of the pacemak-
er cells in the heart or the autonomic inputs to them. 
This work proposes a continuous time model for the 
simulation of the RSA, and also a framework for its 
identification from the observed signals. An Integral 
Pulse Frequency Modulation (IPFM) system generates 
the heart beat timing having as input the respiratory 
flow filtered by a first-order low-pass filter with DC 
gain G and cutoff frequency c. Filter parameters are 
estimated by least-squares linear regression from the 
observed flow and signals obtained by interpolating a 
function of the heart beat times. The DC gain was re-
covered by the model with an overestimated mean error 
of 26.1± 22.2%; the cutoff frequency c with a underes-
timated mean error of 19.7± 14.5%. The model was able 
to represent RSA characteristics, but further research is 
needed to implement this technique. 
 
Keywords: Heart rate variability, respiratory sinus 
arrhythmia, modeling, continuous-time model, integral 
pulse frequency modulation.  

Introduction  

Models of the heart rate variability (HRV), under-
stood as the time changes of the interbeat intervals 
(commonly denoted as RR, the intervals between con-
secutive R waves of the ECG), also called cardiac tach-
ogram, have been shown to provide useful information 
about the physiological processes involved in the gener-
ation of heart rhythm, such as autonomic activity, im-
balance and baroregulation. Particularly, the respiratory 
portion of the HRV, called respiratory sinus arrhythmia 
(RSA), have been shown to convey information about 
the status of the autonomic system, reflecting changes 
due to factors such as disease [1] and affective state [2]. 

It is usual to employ frequency domain representa-
tions, for example the power spectral density (PSD), 

obtained either from the Fourier transform or from dy-
namic models, for the description, classification and 
diagnosis of the HRV. However, it is also usual that 
these models are built on a discrete-time basis, in which 
an evenly sampled RR signal is interpolated from the 
original series at a low sampling rate, for instance 4 or 5 
samples per second. 

Some limitations arise from this discrete-time ap-
proach. First, the assumption that there is a subjacent 
RR signal that is unevenly sampled by the actual heart 
beats does not correspond to the anatomical and physio-
logical findings. Also, the mechanisms underlying the 
heart timing – changes in the membrane potentials of 
the pacemaker cells and its modulators such as the sym-
pathetic and parasympathetic inputs – are of continuous 
nature. On the other hand, discrete-time models, alt-
hough descriptive and useful, cannot provide one with 
the timing of the heart beats, that would be needed for 
some purposes, for instance in the study of the cardi-
orespiratory synchronization [3]. Hence, continuous-
time models may be an alternative for the study of the 
HRV. 

Among the continuous-time models available, those 
based on the integral pulse frequency modulation 
(IPFM) have been developed and presented in the litera-
ture as able to describe the HRV [4]. In the IPFM, the 
heart beats arise at the crossing of a threshold by the 
output of an integrator with reset, fed with a modulating 
signal that may represent the many inputs of the cardiac 
pacemaker. This model may be at the same time physio-
logically sound – since the pacemaker cells have an 
integrator-like behavior – and useful as a generator of 
the heart timing signal. 

The purpose of the current work is to present simula-
tions and a framework for the identification of parame-
ters of a continuous-time model of the RSA portion of 
HRV, based on an IPFM system.  

Materials and Methods  

A description of the model, its simulation and the 
technique for the identification follows. All processing 
was performed with WinPython 2.7.5, using the 
DOPRI5 ODE solver from the Scipy package with de-
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fault settings, under Windows 7 ® (Microsoft, USA) in 
a RF511 notebook (Samsung, Brazil). The algorithm is 
shown in appendix.  

The model – The IPFM model, including the first-
order transfer function postulated to describe the respir-
atory modulation of the heart period, is depicted in Fig-
ure 1.  

 

 
 

Figure 1. The transfer function of RSA coupled to the 
IPFM model. F(t) is the respiratory flow, H(s) is the 
transfer function between F(t)  and m(t), the modulating 
function; 1/ ̅ is the gain of the integrator, y(t) is an 
intermediary signal and b(t) is a signal with pulses at 
times tk , tk+1 and tk+2  representing the instants of the 
heart beats. 
 

The flow signal F(t) is filtered by a low-pass first-
order filter with transfer function H(s) given by:  

                                 (1) 

where G is the DC gain of the filter and c = 1/Tc is its 
cutoff frequency. The filter output, the dimensionless 
signal m(t), is a modulating signal that is added to 1 and 
fed into an integrator through a gain 1/ ̄, where ̄ is the 
mean heart beat period. The output of the integrator is 
continuously compared to the unity; when it reaches this 
value, at time tk, the integrator is reset and the k-th heart 
beat is issued. The series of heartbeat times is thus pro-
duced. Thus, the following equation hold:  

                            (2) 

that leads to equation (3): 

̅                        (3)  

Simulations – There were three simulations. Flow 
was represented by a sinusoidal wave, with period RP 
and inspiratory-to-expiratory time ratio of 1:1. Ampli-
tude was set for a tidal volume of 0.5 L. Flow was fil-
tered through the first-order low-pass filter, in equation 
(1). The resulting signal, m(t), as well as the mean heart 
period ̄ were fed into the IPFM model, which yielded 
the series of heart beat times tk. The simulation time 
span was of 60 s, with a time step of 1 ms. Only the last 
30 s were processed for parameter identification, to 
avoid transient effects. Table 1 presents the parameter 
values employed in this study, chosen to generate F(t) 

and RR intervals roughly similar to those obtained from 
representative subjects in another study [5].  

Table 1: Parameters values employed in the simulations 
(S1 to S3).  

Parameter S1 S2 S3 
RP 4.5 7.5 4.5 
c 0.1 0.2 0.2 
G 5.0 5.0 2.0 
̄ 0.8 0.7 1.0 

Parameter identification – The simulated signals 
were segmented from the first to the last available heart 
beat. Time origin was set at t0 by subtracting this value 
from all tk. The observed mean heart period, ̅ , was 
calculated as:  

̅ / 1                      (4)  

where n+1 is the number of heart beats. Then, the series 
. ̅− 	 was calculated and interpolated with a cubic 

spline as an estimate of the time integral of m(t), see 
equation (3). The analytically differentiated spline ren-
dered m(t). From the integral of the inverse Laplace 
transform of the H(s), the time-domain relationship 
between F(t) and m(t) at a given time ti is found as:  

              (5)  

where C is a constant accounting for the initial condi-
tions. The values of G/Tc and -1/Tc are estimated by 
linear regression, using the integral of F(t) estimated 
with the trapezoidal method and the integral of m(t) and 
m(t) obtained by the aforementioned spline interpola-
tions, at the same time points of F(t). The estimated 
parameters are calculated directly from these values. 
The first 10% of the signals were discarded, again to 
avoid transient effects.  

Results  

The identified parameters are compared to the origi-
nal in Table 2.  

 
Table 2. Comparison between parameters employed and 
estimated in simulations. 

Parameter S1 S2 S3 
Orig Est Orig Est Orig Est 

G 5.00 6.24 5.00 5.23 2.00 2.98 
c 0.100 0.0800 0.200 0.19 0.200 0.132 

 
Interbeat intervals obtained with the model are pre-

sented in Figure 2, together with the tachograms of 
representative subjects from the referred experimental 
study. 
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Figure 2. A, B and C are the plots of the three simula-
tions (S1, S2 and S3, respectively). The upper panel of 
each graph represents measured values of flow and 
tachogram; the lower panels show simulated flow and 
tachograms obtained with the original and estimated 
parameters (blue and red, respectively).  
 
 
Discussion  
 

The model was able to generate tachograms with 
reasonable characteristics. Parameters were estimated 
with low error in some cases, although loss of accuracy 
occurred. 

Data from other works, for instance that of Angelone 
and Coulter [6], suggest that a low-pass process may be 
in course between respiration and RSA. On the other 
hand, at very low respiratory frequencies the RSA 
seems to vanish. The current model meets qualitatively 
some of these experimental observations. 

Limitations – Nonrespiratory  portions  of  the  sig-
nals, for example the low-frequency fluctuations of the 
tachogram  and  the  heartbeat  detection  er-
rors,  were  not represented. However, even in the ab-
sence of these and other possible departures from the 
proposed model, such as nonlinearities and higher order 
behaviors, estimation errors were observed. These may 
be due to some factors, such as the uneven and low 
sampling rate of the modulation function that is inherent 
to the nature of the heart beat fluctuation, and the spline 
interpolation technique, which may produce artifacts in 
both the integral of m(t) as well as in its derivative, m(t). 
Another important limitation is that, for the sake of 
simplicity, a sinusoid was chosen to represent the res-
piratory signal in the simulation. It has a poorer spectral 
content than their real counterparts. Broader spectra 
may enhance parameter estimation or cause undesirable 
effects, for instance aliasing due to low sampling rate by 
the heart beats. The test of these hypotheses, for in-
stance by the evaluation of sensitivities to noise, mean 
heart rate and other parameters, require further investi-
gation. 

In conclusion, this model seems to be able to repre-
sent RSA characteristics. Further research is needed to 
assess whether the proposed model fits experimental 
data well and if the identification technique is able to 
deal with real-world nonidealities such as noise and 
artifacts.  
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Appendix  –  listing of the simulation program with 
parameters according to the S1 model (see Methods).  

from scipy.integrate import ode,cumtrapz  
from scipy.interpolate import interpolate  
 
def derivatives(t,states):  

dm = (G * F - states[0]) / Tresp  
dI = (1.0 + states[0]) / Taum  
return [dm,dI]  

 
I = 0.0  
m = 0.0  
Taum = 60.0/80.0 # Selected values: [0.75 s]  
Presp=60.0/15.0 # Selected values: [4 s]  
A=0.5*2.0*pi/Presp/2.0 # Tidal volume = 0.5  
G = 2.0 # Selected values: [2.0]  
Tresp = 5.0 # Selected values: [5.0]  
t0 = 0  
t1 = 60.0  
dt = 1.0/1000.0  
states0=[m,I]  
 
r = ode(derivatives).set_integrator('dopri5')  
r.set_initial_value(states0, t0)  
Mstates=zeros((1+int((t1-t0)/dt),len(states0)))  
Flow=zeros((1+int((t1-t0)/dt)))  
Vtime=zeros((1+int((t1-t0)/dt)))  
tbat = array([0.0])  
i=0  
while r.successful() and r.t < t1:  

F=A*sin(r.t*2.0*pi/Presp)  
Flow[i]=F  
Mstates[i,:]=r.y  
Vtime[i]=r.t  
r.integrate(r.t+dt)  
if r.y[1]>=1.0:  

r.set_initial_value([r.y[0],0.0],t=r.t)  
tbat=hstack((tbat,[r.t]))  

i=i+1  
 

q=find(tbat>t1/2.0)  
tbat=tbat[q]  
q=find((Vtime>=tbat[0]) * (Vtime<=tbat[-1]))  
Vtime=Vtime[q]  
Vtime=Vtime-Vtime[0]  
Flow=Flow[q]  
tbat=tbat-tbat[0]  

Tm=(tbat[-1]-tbat[0])/(len(tbat)-1)  
k=arange(0,len(tbat))  
Vol=cumtrapz(Flow,axis=0,initial=0.0)*dt  
S=interpolate.splmake(tbat,k*Tm-tbat,order=3)  
Im=interpolate.spleval(S,Vtime,deriv=0)  
m=interpolate.spleval(S,Vtime,deriv=1)  
M=vstack((Vol,Im,ones(shape(Im)))).T  
B=reshape(m,(len(m),1))  
l=len(m)  
M=M[int(l/10):,:]  
B=B[int(l/10):]  
 
pars=inv(M.T.dot(M)).dot(M.T.dot(B))  
 
print 'Simulated: G='+format(G,".3f")+\  
' ; Tau='+format(Tresp,".3f")  
print 'Estimates: G='+format(float(pars[0]/-
pars[1]),".3f")+\  
' ; Tau='+format(float(1.0/-pars[1]),".3f") 
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