PRODUÇÃO DE NANOCOMPÓSITOS À BASE DE GO E nHAp POR ELETRODEPOSIÇÃO EM SOLUÇÃO ELETROLÍTICA ÁCIDA

C.M.R.Rosa¹, E.Saito², H.J. Ceragioli³, J.P.Barros², F.R.Marciano¹ e A.O.Lobo¹

 ¹Laboratório de Nanotecnologia Biomédica /Instituto de Pesquisa e Desenvolvimento/Universidade do Vale do Paraíba, Av. Shishima Hifumi, 2911, São José dos Campos, 12244-000, SP, Brasil.
²Laboratório Associado de Sensores e Materiais/Instituto Nacional de Pesquisas Espaciais, Av. dos Astronautas 1758, São José dos Campos, 12227-010, SP, Brasil.

³Departamento de Semicondutores, Instrumentos e Fotônica, Faculdade de Engenharia Elétrica e de Computação, Universidade Estadual de Campinas, 13083-852 Campinas, SP, Brazil E-mail: cintiamrrosa@gmail.com

Resumo: Combinação de Óxido de Grafeno superhidrofilicos (GO) e moldes induzidos de nanohidroxiapatita (nHAp) são de grande interesse na medicina ósseo-regenerativa devido ao biomimetismo e propriedades mecânicas. Os GO foram produzidos pela técnica de deposição química via fase vapor assistida por alta temperatura. O processo de eletrodeposição foi realizado com uma estação de trabalho eletroquímica fornecendo energia de corrente contínua no potencial -2,0 V-(vs. Ag/AgCl (3M)). O eletrólito constituí por 2,5 mM • Ca(NO₃)₂.4H₂O e 1,5 mM • NH₄H₂PO₄. Estudouse a influência do pH ácido durante esse processo, o mesmo foi ajustado com solução HCl. A caracterização deu-se por microscopia eletrônica de varredura (MEV), energia dispersiva de raios-X (EDX) e difratometria de raios X (DRX). Mostrou-se pela primeira vez a produção de nHAp em meio eletrolítico ácido e observou-se que a morfologia é influenciada pela variação do substrato e pH.

Palavras-chave: Nanohidroxiapatita, Eletrodeposição, pH, Óxido de Grafeno.

Abstract: The combination of superhydrophilic graphene oxide (GO) and induced molds of nanohydroxyapatite (nHAP) are vastly interesting to *bone-tissue regenerative medicine due to the biomimetic* and mechanical properties. We produced the GO through chemical deposition vapor assisted by high temperature furnace. The process of electrodeposition was performed with an electrochemical workstation providing the potential of -2.0V (vs. Ag/AgCl (3M)) of direct current (DC). The electrolyte consists of 2.5 mM $Ca(NO_3)_2.4H_2O$ and 1.5 mM • $NH_4H_2PO_4$. We studied the influence of pH during this process, it being adjusted with HCl solutions. Characterization was performed through scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and X-ray diffraction (XRD). We showed for the first time production of nHAp in acid electrolite and we observed that morphology is influenced by the variation of the substrate and pH.

Keywords: Nanohydroxyapatite; Electrodeposition, pH, Graphene Oxide.

Introdução

A HAp é o constituinte mineral natural encontrado no osso representando de 30 a 70% da massa dos ossos e dentes e possui propriedades de biocompatibilidade e osteointegração, o que a torna substituta do osso humano em implantes e próteses, daí o grande interesse em sua produção [1]. A fórmula da HAp estequiométrica é Ca10 (PO4)6 (OH)2, com razão Ca/P igual a 1,67 e é o fosfato de cálcio mais estável e o menos solúvel de todos. Porém composições estáveis podem ter esta razão estendida para aproximadamente 1,50 [1]. No entanto, a resistência mecânica da HAp é demasiado pobre para ser utilizado em aplicações de suporte de carga [2], visto isto buscou-se associar as propriedade da HAp às propriedades do GO, e tendo a eletrodeposição como uma das técnicas mais vantajosas para a produção do nanocompósito, por apresentar alta eficiência da estrutura do revestimento, fácil controle e custo baixo [3].

O uso do óxido de grafeno (GO) para produção de nanocompósitos também é amplamente estudado, pois apresenta características semelhantes as dos nanotubo de carbono (CNT) e pode ser empregado em algumas áreas de biotecnologia como biossensores, imagiologia celular, nanosonda, entrega da droga e assim por diante, devido a sua grande área superficial, a facilidade de funcionalização química, boa biocompatibilidade, bioestabilidade [4] e resistência mecânica. Neste contexto, Lobo e colaboradores, desenvolveu um método de eletrodeposição de nanohidroxiapatita (nHAp) altamente eficaz e rápido utilizando CNT alinhados de múltiplas paredes superhidrofílicos (VAMWCNT-O₂) crescidos sobre ligas de Ti com grau de pureza biomédica e identificou que o processo é controlado por difusão a partir de um estágio da eletrodeposição [3]. No entanto, o processo de eletrodeposição foi estudado somente com um pH próximo de 5, sendo observado cristais de nHAp do tipo placas, estequiométricos e homogêneos sobre a superficie de VAMWCNT-O2.

Sabe-se que as condições do substrato influenciam diretamente no processo de eletrodeposição

de nHAp, assim como o pH, temperatura e densidade de corrente [5]. É relatado na literatura que cristais de nHAp são eletrodepositados em pHs próximos a neutro ou básico, devido a facilitação de disponibilidade de íons OH⁻ na superfícies de ligas metálicas e materiais carbonosos [6] utilizando pHs entre 5,0-8,0.

Posto isto, o objetivo deste trabalho é investigar os possíveis efeitos do pH no produto da eletrodeposição de nHAp sobre GO para o desenvolvimento de um novo nanobiomaterial à base de nHAp/GO.

Materiais e métodos

Síntese de GO utilizando a técnica de deposição química via fase vapor assistida por alta temperatura – As amostras de GO foram preparadas em sobre placas de titânio com pureza biomédica de 10 mm x 10 mm x 1 mm. Antes da deposição, os substratos foram imersos na polianilina diluída em N, Ndimetilformamida e, em seguida, secou-se à temperatura ambiente por 2 horas. Feito isso, os substratos foram imersos em solução de nitrato de níquel diluído em acetona e em seguida secou-se novamente à temperatura ambiente. Um sistema de deposição química de vapor por filamento quente (HFCVD) foi utilizado nas amostras. A fonte de carbono era uma mistura de propanona (acetona), cânfora e ácido cítrico. Esta fonte de carbono é transportada para um HFCVD pelo fluxo de gás hidrogênio (15 sccm). A câmara HFCVD é mantida em 10 Torr, com fluxos constantes de 65 sccm de nitrogênio e 20 sccm de oxigênio. Um filamento de tungstênio espiral aquecido a 1500 ° C dissocia os gases e vapores em radicais, depositando filmes finos de GO sobre os substratos de Ti, durante 30 min [7].

Funcionalização de GO por grupos polares – A funcionalização das amostras GO, foi feita em um reator de plasma de corrente pulsada-direto com uma taxa de fluxo de oxigênio de 1 sccm, com uma pressão de 85 mTorr, -700 V e com uma frequência de 20 kHz. O tempo total de ataque com plasma de oxigênio foi de 120 segundos, este tratamento modifica a superfície hidrofóbica do GO, tornando-o superhidrofílico [7].

Produção do nanocompósito nHAp/GO – Para a produção do eletrólito foi utilizado reagentes de alta qualidade (Sigma-Aldrich[®]), com máxima pureza, tais descritos na tabela 1. Salienta-se que para a preparação do eletrólito utilizou-se a razão Ca/P da nHAp estequiométrica [3]. O pH da solução eletrolítica foi em torno de 4,8.

Tabela 1: Reagentes do eletrólito.

Eletrólitos	Concentração	Volume
Ca(NO ₃)2.4H ₂ O	2,5 mM	50 mL
NH ₄ H ₂ PO ₄	1,5 mM	50 mL

O processo de deposição eletroquímica foi realizado em um Potenciostato/Galvanostato (AUTOLAB, PGSTAT 128N, HOLANDA), operando em modo Potenciostático. Todos os acessórios para as medidas eletroquímicas deste trabalho foram também adquiridos da empresa METROHM.

Para a eletrodeposição de nHAp, foi utilizado como ânodo GO (15mmX15mmX1mm) acoplado à um portaeletrodo (formato de cachimbo), de teflon, com uma área exposta, um círculo com $2,8x10^{-5}$ m². O processo foi realizado em uma estação de trabalho eletroquímica fornecendo uma energia de corrente contínua no potencial de -2,0 V, durante 1800 segundos. Utilizou-se como contra-eletrodo um bastão de platina com $5x10^{-2}$ m de comprimento e $2x10^{-4}$ m de diâmetro. O monitoramento do pH foi realizado através do módulo pX1000 acoplado ao AUTOLAB 128N (METHOHM) e para a estabilização do mesmo foi criado um sistema de controle, no qual uma célula secundaria liga-se a célula eletrolítica por meio de uma "ponte salina" adaptada ao sistema como segue a Fig. 1.

Figura 1- Esquema do processo de eletrodeposição de nHAp, a solução eletrolítica usada na deposição, foi também usada para transporte de íons na ponte.

O monitoramento da temperatura foi também realizado através do módulo pX1000 acoplado. Para manter a solução em temperatura constante, utilizou-se um banho termostático (QUIMIS, Modelo Q-218-1). Durante o processo a solução permaneceu, com auxilio de agitador magnético (IKA[®]), sob agitação contínua de 450rpm, a temperatura 70°C, e pH ajustado, à frio, para 3,0, com solução de HCl.

Caracterização morfológica e estrutural dos nanocompósitos produzidos – Por meio dos dados coletados do Potenciostato/Galvanostato através do programa NOVA 1.8[®], fornecido pela empresa AUTOLAB, gerou-se gráficos de corrente x tempo, pH x tempo e temperatura x tempo, o comportamento de tais fatores ajudam a compreender a evolução do processo durante os 1800s de eletrodeposição.

As análises morfológicas nHAp da eletrodepositada sobre o GO funcionalizado foram realizadas pela técnica de MEV (Zeiss EVO Ma10) acoplado com EDX (Oxford Instruments Inca Penta FET x3) alocado no Instituto de Pesquisa e Desenvolvimento da Universidade do Vale do Paraíba (IP&D/UNIVAP). Utilizaram-se como parâmetros: Tensão de 20 kV, distância de trabalho entre 13-15 mm, e ampliações que variam de 1-3 K vezes. As amostras foram metalizadas, recebendo um revestimento de ouro para tornar a superfície condutora. A técnica de MEV foi utilizada com o objetivo de se verificar a morfologia dos cristais depositados.

A análise química semiquantitativa do nanocompósito de nHAp/GO foram realizadas no acessório de EDX acoplado. Após a coleta dos espectros de EDX foram calculadas as razões Ca/P. Os resultados obtidos foram comparados com os resultados prévios de Lobo et al [3] e outros.

A identificação das fases presentes foi realizada através de DRX (Panalytical, modelo X'Pert Pro). Os parâmetros da análise foram 20 entre 5° e 90°, tempo por passo de 10s e passo de 0,02°. A identificação das fases foi conduzida no software Highscore 3.0 da marca Panalytical. As análises de DRX foram realizadas no Laboratório Associado de Sensores e Materiais do Instituto Nacional de Pesquisas Espaciais (LAS/INPE).

Resultados

1. Dados do processo: Programa NOVA 1.8[®] (AUTOLAB)

Na figura 2a tem-se que o processo de eletrodeposição com média de evolução de corrente de $-1,13 \pm 4,97$ mA, a figura 2b mostra a eficiência do sistema criado para controle do pH, medindo em média 3,834 \pm 0,018. Foi utilizado o potenciostato para se controlar da variação de corrente que ocorre no processo de eletrodeposição, fixou-se a tensão de -2,0V na fonte e temperatura constante, apresentando valor de $71,46 \pm 0,21$ °C.

Figura 2- Parâmetros estudados durante o processo de eletrodeposição nHAp sobre $GO-O_2$ durante 1800s a 70°C. (2a) corrente (A) vs tempo (s); (2b) pH vs tempo (s).

2. Microscopia Eletrônica de Varredura (MEV)

Cristais de HAp foram eletrodepositados após 1800s em solução eletrolítica ácida. Pode-se observar a formação de nanocristais do tipo tubular, devido a alta evolução de hidrogênio.

Figura 3- Micrografia dos nanocristais de HAp do tipo tubular. Micrografías com aumento de 3 kX.

3. Espectroscopia por Energia Dispersiva de Raios-X (EDX)

O resultado de EDX obtido da eletrodeposição de nHAp em GO, com razão Ca/P média de $1,59 \pm 0,04$ Ca/P para meio eletrolítico ácido.

4. Difratometria de Raios-X (DRX)

O principais picos na nHAp aparecem em valores de 2Θ de 25,9° para reflexão (002), tal plano pertence apenas a Hap, sendo ele a prova de que o cristal depositado é HAp, a reflexão à 31,9° (tripleto) pertencem aos planos (211), (112) e (300) [3]. Ficha cristalográfica utilizada foi: 00-09-0432

Figura 4- Difratograma dos nanocompósitos nHAp/GO-O₂ produzidos em meio eletrolítico ácido (pH 3,0).

Discussão

De acordo com os testes realizados pode-se verificar que há influência do pH na eletrodeposição. Segundo Zhao e colaboradores, que conduziu a eletrodeposição de HAp sobre ligas de Ti, utilizando pH ácido, os picos de difração, pela técnica de DRX, dos nHAp não são óbvios [2]. No entanto, este trabalho mostra que é possível obter nHAp em pH 3,0, conforme caracterização por EDX e DRX (Fig. 4), sobre GO-O₂.

Segundo Djosica e colaboradores, revestimento de HAp sobre Ti, com o menor cristalito, tamanho do domínio de 15,6nm, e maior porosidade foi obtido em elevada densidade de corrente (9mA cm⁻²⁾, dado que o crescimento dos cristalitos é suprimida pela reação de hidrogênio evolução do [8]. Isso explica as características morfológicas encontradas nos nanocristais de nHAp produzida em meio ácido, pois a dissociação de H⁺ será maior. Portanto a morfologia está associada ao comportamento da corrente (Fig. 2a) que está relacionado ao pH (Fig. 2c), que neste trabalho ficou estabilizado durante o processo com o auxilio do sistema de baixo custo desenvolvido.

A formação de nHAp estequiométrica (Fig. 4) ocorreu mesmo em meio eletrolítico ácido. Segundo Eliaz e colaboradores, revestimentos depositados sobre CPTi a pH 4,2 são mais densos e revelaram traços de fosfato octacálcico e, possivelmente, de hidrogeno fosfato de cálcio [5]. E segundo Zhao e colaboradores, o revestimento é fino e que a cristalinidade da nHAp é mais elevada e o conteúdo (massa) do revestimento aumenta em valor de pH relativamente alto [2]. Contudo, este trabalho comprova que ocorre a eletrodeposição de nHAp em meio ácido. Salienta-se que foram produzidos nanocristais de nHAp com estequiométricas composições em condições eletrolíticas adversas se baseado a literatura atual, haja visto os valores de razão Ca/P coletado pela análise de EDX. Os resultados de DRX (Fig. 4) também identificaram a fase da nHAp, utilizando a ficha cristalográfica 00-09-0432, tal ficha é usada por Zang [9] e Zanin [7] para a identificação dos planos cristalográficos da nHAp estequiométrica. Com relação à morfologia, os nanocristais foram produzidos em grande quantidade, no entanto, notou-se que o substrato influencia na morfologia de nanocristal formado (Fig. 3), é possível provar isso se comparando cristais depositados sobre ligas metálicas, trabalho desenvolvido por Noam [10] e colaborador, que obteve cristais do tipo placa. E se comparar entre os pHs a morfologia também é alterada, tal fato pode ser reforçado pelo trabalho desenvolvido por Zanin e colaboradores [7] que usa o GO como substrato, porém em pH inicial igual a 4,7 e obtém como produto da deposição cristais do tipo globular, essa influência está diretamente relacionada a evolução de corrente desenvolvida em cada pH.

Os cristais produzidos neste trabalho são do tipo tubular (*volcano-like*) (Fig. 3). A estrutura do tipo tubular dos revestimentos é consequência das bolhas de hidrogênio que evoluiu no cátodo, esta afirmação é corroborada pelo fato de que os vulcões são quase arredondados, o que sugere que a acumulação de placas ocorre ao redor da bolha de gás H⁺ [8] que pela pressão é expulsa. Os resultados deste trabalho mostram que é possível manipular o tipo de nanocristal através do controle do pH.

Conclusão

Identificou-se que os nanomateriais carbonosos podem ser utilizados para a eletrodeposição de nanocristais de HAp de forma homogênea, estequiométrica e com a possibilidade de manipular o tipo de cristal a ser produzido, através da alteração do pH. No entanto, pela primeira vez demonstrou-se a obtenção de nHAp em pH ácido. Verificou-se também que o sistema de baixo custo desenvolvido para o a estabilidade do pH é eficiente.

Agradecimentos

Os autores agradecem a FAPESP pelo suporte financeiro no projeto (2013/09684-0), (2011/20345-7), (2011/17877-7).

Referências

- [1] A. C. F. M. COSTA; M. G. Lima; L. H. M. A. Lima; V. V. Cordeiro; K. M. S. Viana; C. V. Souza; H. L. Lira. Hidroxiapatita: Obtenção, caracterização e aplicações. Revista Eletrônica de Materiais e Processos, v.4.3 (2009) p. 29-38.
- [2] ZHAO Zhong-wei; Zhang Gang; Li Hong-gui. Preparation of calcium phosphate coating on pure titanium substrate by electrodeposition method. J. Cent. South Univ. Technol. v. 11 (2004) p.148-151.
- [3] LOBO A.O., Obtenção de super-hidrofilicidade em nanotubos de carbono alinhados e sua aplicação como nanobiomaterial. Tese de Doutorado, 2011.
- [4] Ming LI, Qian Liu, Zhaojun Jia, Xuchen Xu, Yan Cheng, Yufeng Zheng, Tingfei Xi, Shicheng Wei. Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications. CARBON 67 (2014)185– 197.
- [5] Noam ELIAZ; T. M. Sridhar. Electrocrystallization of Hydroxyapatite and Its Dependence on Solution Conditions. Crystal Growth & Design, v. 8, No. 11, 2008.
- [6] A. O. LOBO, M. A. F. Corat, S. C. Ramos, J. T Matsushima, A. E. C. Granato, C. Pacheco-Soares, E. J. Corat. Fast Preparation of Hydroxyapatite/Superhydrophilic Vertically Aligned Multiwalled Carbon Nanotube Composites for Bioactive Application. American Chemical Society – p. 18308-18314, 2010.
- [7] Hudson ZANIN, E. Saito, F. R. Marciano, H. J. Ceragioli, A. E. C. Granato, M. Porcionattod and A. O. Lobo. Fast preparation of nano-hydroxyapatite/ superhydrophilic reduced graphene oxide composites for bioactive applications. J. Mater. Chem. B, 2013, 1,4947.
- [8] M.S. DJOSICA, V. Panicb, J. Stojanovica, M. Mitricc, V.B. Miskovic-Stankovicd, The effect of applied current density on the surface morphology of deposited calcium phosphate coatings on titanium, Physicochem. Eng. Aspects 400 (2012) 36–43.
- [9] ZHANG Yuan-yuan, TAO Jie, PANG Ying-chun, WANG Wei, WANG Tao. Electrochemical deposition of hydroxyapatite coatings on titanium. Trans. Nonferrous Met. Soc. China 16 (2006) p. 633-637.
- [10] Noam Eliaz, Moshe Eliyahu. Electrochemical processes of nucleation and growth of hydroxyapatite on titanium supported by real-time electrochemical atomic force microscopy. October 2006 in Wiley InterScience, p. 621-634.