EQUIPAMENTO INDUTOR DE SUOR COM CORRENTES CONTÍNUA PULSADA OU CONSTANTE: PAPEL DA IMPEDÂNCIA ELETRODO-PELE

F. U. Vieira Junior^{*,****}, P. J. C. Canavezi^{***}, C. C. S. Gomez^{**}, M. P. Servidoni^{**}, A. F. Ribeiro^{**}, J. D. Ribeiro^{**}, E. T. Costa^{*,***}

*Centro de Engenharia Biomédica – CEB/UNICAMP, Campinas, Brasil **Centro de Investigação em Pediatria – CIPED/FCM/UNICAMP, Campinas, Brasil ***Departamento de Engenharia Biomédica – DEB/FEEC/UNICAMP, Campinas, Brasil ****Instituto Federal de São Paulo – IFSP, Campinas, Brasil e-mail: educosta@ceb.unicamp.br

Resumo: A fibrose cística é uma doença que leva seus portadores a uma expectativa de vida de 25-30 anos. Seu diagnóstico precoce é essencial para tratamento que melhore as condições de vida e na sobrevida dos pacientes. Este trabalho apresenta novo protótipo de equipamento para indução de sudorese em testes para diagnóstico de fibrose cística (por iontoforese com pilocarpina). O teste consiste na coleta de suor após a estimulação por tempo preconizado de 15-30 minutos e posterior detecção de íons Cl- na amostra de suor coletada. Um microcontrolador gerencia os diversos componentes do equipamento, gerando estímulos de corrente de 0 a 5 mA, em corrente contínua constante (CCC) ou corrente contínua pulsada (CCP) com frequência variando de 0-5 kHz. Durante a estimulação são medidas tensão e corrente e calculada a impedância na interface eletrodo-pele. Os resultados de testes em 48 voluntários mostraram grande variação da impedância nos primeiros 20s tendendo a um valor constante com decaimento exponencial.

Palavras-chave: fibrose cística, iontoforese, corrente contínua constante, corrente contínua pulsada.

Abstract: Cystic fibrosis is a lethal disease with 25-30 years of expectance of life for patients. Its early diagnosis is essential to allow better quality of life and patient survival. This paper presents a new prototype of an equipment to induce sweating for tests of cystic fibrosis by the method of intophoresis with pilocarpine. The test consists in the sweat collection for 15-30 min after stimulation and further detection of ions Cl⁻ in the collected sweat sample. A microcontroller manages several equipment components generating electric current stimulus of 0-5 mA, constant direct current (CCC) and pulsed direct current (CCP) with frequency varying from 0-5 kHz. Voltage and current intensities are measured during stimulation allowing the calculus of the skin-electrode electrical impedance. Tests results in 48 volunteers have shown that impedance has huge variation in the first 20s with an exponential decay to a constant value.

Keywords: cystic fibrosis, iontophoresis, constant direct current, pulsed direct current.

Introdução

A Fibrose Cística (FC) é uma doença que afeta células epiteliais de vários órgãos, incluindo o trato respiratório, pâncreas exócrino, intestinos, canais deferentes, sistema hepatobiliar e glândulas sudoríparas exócrinas [1-4]. Por ser a FC uma doença letal, leva seus portadores a uma expectativa de vida entre 25 e 30 anos [5] e seu diagnóstico precoce é um fator determinante no tratamento que leva à melhora na qualidade de vida e na sobrevida dos pacientes. Os pacientes fibrocísticos apresentam um transporte anormal de íons, o que promove uma concentração elevada de cloreto e de sódio no suor. O diagnóstico da FC se faz por diferentes análises que culminam na dosagem de eletrólitos (entre eles o principal, que é o cloreto) no suor, geralmente pelo método de iontoforese com pilocarpina [6,7]. O resultado do teste é considerado negativo para fibrose cística quando se obtém uma concentração de cloreto abaixo de 40 mmol/l, limítrofe entre 40 e 60 mmol/l e positivo quando acima de 60 mmol/l (em duas dosagens independentes) [8,9].

A iontoforese é uma técnica baseada na aplicação, por meio de eletrodos específicos, de corrente elétrica de baixa intensidade unidirecional (corrente contínua) de forma a impulsionar a liberação de fármacos e eletrólitos através de membranas biológicas num processo de transferência transdermal de drogas [10]. Essa técnica requer a determinação do peso exato do suor com quantidade mínima de 50 mg de amostra, idealmente \geq 75 mg [11,12].

O estímulo elétrico é realizado por meio de eletrodos colocados sobre a pele (geralmente no antebraço) com gaze umedecida ou outro meio que contenha solução de cloridrato de pilocarpina 80 mg% (eletrodo positivo) e ácido sulfúrico 0,04 N (eletrodo negativo). A intensidade da corrente aplicada é limitada pela tolerância da pele, podendo variar entre 1,0 e 5,0 mA, sendo recomendado manter a densidade de corrente abaixo de 0,5 mA/cm² para evitar queimaduras devido à polarização na interface eletrodo-pele [13,14]. O tempo de aplicação mínimo deve ser de cinco minutos e, em seguida, o suor é coletado por um período de 30 a 40

minutos e enviado para a análise laboratorial para dosagem dos eletrólitos [6]. Geralmente, aplica-se corrente contínua constante, embora haja relatos de estudos anteriores com outros tipos de correntes [15-17].

Em trabalho anterior, apresentamos resultados preliminares de um equipamento que permite a aplicação de corrente elétrica para auxiliar na indução de suor [18] que, além de aplicar corrente elétrica contínua constante, permite a aplicação de corrente pulsada. O equipamento foi modificado e foram introduzidas novas possibilidades de aplicação de correntes que levaram à submissão de pedido de patente de invenção (BR1020130210978). O novo equipamento foi utilizado no CIPED (Centro de Investigação em Pediatria) da UNICAMP, permitindo sua avaliação em estudos clínicos [19].

O objetivo do presente artigo é apresentar nova versão do equipamento e um estudo comparativo entre a impedância eletrodo-pele quando se aplica corrente contínua constante e corrente contínua pulsada.

Materiais e métodos

Novo protótipo – O equipamento mostrado em [9] sofreu modificações na estrutura do software e pequenas alterações de hardware. Na Figura 1 é mostrado o diagrama em blocos do novo protótipo.

Figura 1. Diagrama em blocos do protótipo atual (ver descrição de cada bloco no texto).

Os blocos da Figura 1 são descritos resumidamente a seguir. O protótipo foi desenvolvido em torno de um microcontrolador PIC18F4523 (μ C, bloco 6). O que caracteriza o novo protótipo é a capacidade de buscar automaticamente o menor valor de impedância varrendo a frequência de estimulação de 0 a 5 kHz. O μ C gerencia todas as tarefas, definindo, a partir das configurações programadas pelo operador que se utiliza de interface simples (bloco 9, composto de display LCD e teclas de funções e de entrada de valores de estimulação), todas as tarefas para que sejam aplicados os estímulos.

O bloco 1 é um circuito oscilador simples com frequência fixa de 20 MHz que alimenta um circuito integrado no bloco 2 (GF – Gerador de Frequência) que, devidamente alimentado pelo μ C, gera sinais com diferentes formas de onda (senoidal, quadrada ou triangular), com tensão de 0,65 V e frequência variável com resolução de 28 bits. Este sinal alimenta o bloco 3. Após a amplificação e modulação do sinal pelo bloco 3, o sinal de tensão é convertido pelo bloco 4 para o seu respectivo valor em corrente elétrica, sendo este conduzido pelos cabos de conexão até os eletrodos de estimulação posicionados na pele do paciente.

O bloco 7 tem um circuito de medição cujo principal elemento é um conversor A/D. Este circuito permite realizar leituras quase simultâneas de tensão e de corrente nos eletrodos de estimulação, informações que permitem calcular a impedância instantânea na interface eletrodo-pele. A característica principal deste circuito é a leitura sincronizada dos parâmetros de tensão e corrente instantâneos com uma resolução máxima de 24bits e taxa de amostragem de 125 kHz. Estas medições são realizadas pelo circuito integrado que, juntamente com um divisor resistivo de tensão e um resistor shunt, faz a amostragem dos sinais e realimenta o circuito de controle através do microcontrolador.

O protótipo pode se comunicar com um microcomputador externo com software de apoio e de análise de dados usando uma interface USB 2.0 (bloco 5). Esta interface é realizada pelo conversor de protocolos MCP2200 da Microchip® e isolação de até 2500 V do ADUM1201 para que correntes elétricas provenientes de conexões com o computador não circulem, garantindo a segurança elétrica durante a operação do equipamento que, em operação normal, fica desconectado da rede elétrica.

O bloco 8 é a fonte de alimentação, constituído de dois circuitos chaveadores de tensão do tipo Boost, o primeiro responsável por fornecer a tensão de 18 V @ 20 mA ao circuito conversor de tensão do bloco 4, que é necessária para garantir a faixa de estimulação e medição da impedância. O segundo circuito chaveador fornece a todo o circuito digital a tensão de 3,3 V @ 120 mA. A alimentação do conjunto fonte, no entanto, é proveniente de quatro baterias recarregáveis de polímero de lítio com valores nominais de 1,2 V @ 2700 mAh cada no tamanho padrão AA.

O software mínimo embarcado no protótipo permite que sejam definidas forma de onda, tempo de estimulação, frequência e amplitude da corrente de estimulação. Além disso, permite a medição de tensão e corrente e o cálculo de impedância da interface eletrodo-pele.

Testes de impedância eletrodo-pele com voluntários - Após testes realizados em laboratório, com diversos valores de impedâncias com circuitos RC, o novo protótipo foi utilizado em testes com voluntários [19]. O projeto foi aprovado pelo Comitê de Ética em Pesquisa da Faculdade de Ciências Médicas da Unicamp, sob o número #80430/2012. Foi utilizada a mesma preparação descrita em [18], com eletrodos de latão (70/30 com 30 mm de diâmetro). Os voluntários foram submetidos à estimulação por corrente contínua constante e por corrente contínua pulsada com forma triangular nas frequências de 200 Hz, 1000 Hz e 5000 Hz. Foram medidas V_{RMS} e I_{RMS} a cada 0,5 s durante 600 s (10 minutos), e calculada a impedância elétrica para cada medição e em cada frequência (incluindo a medição em corrente contínua constante). Como o número de pontos é muito grande, decidiu-se por apresentar os resultados na forma de curvas e não de tabelas, facilitando também a discussão dos resultados.

Análise estatística – Foi utilizada ANOVA associada ao teste de Tukey para comparação dos valores de impedância e adicionalmente foi utilizada análise de covariância (ANCOVA) para comparação entre as curvas. Foi considerado nível de significância de 0,05.

Resultados

Na Figura 2 pode-se ver a variação da impedância durante os 10 minutos de aplicação dos estímulos. Nesta figura, cada ponto de cada curva representa o valor médio de 10 medições a cada 0,5 s, para cada frequência. A Tabela 1 mostra os valores máximos, mínimos e médios da impedância em cada curva mostrada na Figura 1.

Figura 2. Variação da impedância eletrodo-pele para estimulação com corrente contínua constante e com corrente contínua triangular pulsada para diferentes frequências.

Tabela 1 – Valores máximo, mínimo e médio da impedância (em k Ω), referentes à Figura 2.

	CCC	200 Hz	1000 Hz	5000 Hz
Mínimo	0,68	0,55	0,41	0,34
Máximo	7,62	1,61	1,39	1,19
Médio	0,90	0,64	0,48	0,42

Para se ter uma ideia da variação da impedância em cada indivíduo (mostrados como pontos médios na Figura 2), mostra-se na Figura 3 curvas representativas de 7 indivíduos para a frequência de 1000 Hz.

Na Figura 4 são mostrados os primeiros 50 s de estimulação das curvas da Figura 2, observando-se grande variação nos primeiros 20 s, tendendo a decaimento exponencial com pouca variação, embora em valores diferentes de impedância dependendo da frequência de estimulação (CCC, 200, 1 k e 5 kHz).

A comparação entre os valores médios da impedância mostrou que todos os valores (de 0 600 s)

são estatisticamente diferentes (p<0,01), sendo o menor valor de impedância obtido com 5000 Hz.

Figura 3. Variação da impedância eletrodo-pele para estimulação com corrente contínua triangular pulsada para a frequência de 1000 Hz. Cada curva representa os valores de impedância para um indivíduo (7 no total). São mostrados somente os primeiros 50 s de estimulação e medição.

Figura 4. Variação da impedância eletrodo-pele nos primeiros 50 s para estimulação com corrente contínua constante (CCC) e com corrente contínua triangular pulsada para diferentes frequências.

Refazendo a comparação dos valores de impedância, retirando da análise os 100 primeiros segundos (parte variável), isto é, considerando nos cálculos apenas os valores de impedância medidos a partir do tempo 100 s, os resultados se mantêm (p<0,01), sendo a menor impedância obtida com frequência de 5000 Hz. Este valor é confirmado pela análise de regressão entre as curvas (ANCOVA) a partir do tempo de 100 s onde a análise de covariância mostrou diferenças significativas entre os interceptos (p<0,01), com os coeficientes de correlação maiores que 0,97 para todas as curvas.

Discussão

Nossos resultados mostraram que a maior variação de impedância da interface eletrodo-pele ocorreu no primeiro minuto da estimulação, mais claramente nos primeiros 20 s, subindo rapidamente para atingir valores de quase 8 k Ω (para CCC) para tender a uma estabilização com decaimento exponencial para valores abaixo de 1 k Ω . Esses valores são compatíveis com o esperado para a interface eletrodo-pele, geralmente modelada como um circuito RC. Isso certamente levará a um aumento na intensidade da corrente e à polarização do eletrodo com consequente tendência a queimaduras e irritação na pele no local de aplicação dos eletrodos.

Quando se analisa a variação da impedância para corrente contínua pulsada, a impedância é maior tanto no pico quanto na estabilização para a frequência de 200Hz (1,61 k Ω e 0,55 k Ω respectivamente) mas bem abaixo da obtida com CCC. Não há muita diferença entre os valores de impedância nas frequências de 1 kHz $(1,39 \text{ k}\Omega \text{ e } 0,42 \text{ k}\Omega) \text{ e } 5 \text{ kHz} (1,19 \text{ k}\Omega \text{ e } 0,35 \text{ k}\Omega).$ Os resultados, assim, mostram que as melhores frequências para estimulação são as de 1kHz e 5kHz. Comparandose estes resultados com os de nosso trabalho anterior [18], verifica-se que o aumento da corrente suportada pelo voluntário para estimulação com frequências mais altas deve-se à menor impedância elétrica na interface eletrodo-pele e, portanto, menor será a corrente percebida pelo paciente quando estimulado em frequências mais altas.

Conclusão

Foi verificada a variação da impedância elétrica da interface eletrodo-pele e sua dependência com a frequência da forma de onda de estimulação em corrente contínua constante e contínua pulsada. Verificou-se que a impedância tem rápida variação nos segundos iniciais da estimulação, atingindo picos com diferentes valores para cada frequência (DC, 200 Hz, 1 kHz e 5 kHz) com queda exponencial após o pico para valores de impedância que diminuem com o aumento da frequência, o que pode explicar o maior valor de corrente elétrica necessária para definir o limiar de sensação de dor em pacientes observada em trabalho anterior de nosso grupo de pesquisa [18].

Os resultados mostram a necessidade de continuar o estudo desta linha de pesquisa buscando o melhor compromisso entre intensidade e frequência da corrente de estimulação, tempo de estimulação, tempo de coleta do suor e a quantidade de suor requerida para a realização do teste para diagnóstico de Fibrose Cística.

Agradecimentos

Agradecemos aos voluntários, ao pessoal técnico do CIPED e do CEB e ao CNPq pelo suporte financeiro.

Referências

- Riordan, JR, Rommens, JM, Kerem, B, Alon, N, Rozmahel, R, Grzelczak, Z, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989; 245(4922):1066-73.
- [2] Ribeiro, JD, Ribeiro, MA, Ribeiro, AF. Controversies in cystic fibrosis: from pediatrician to specialist. J Pediatr. 2002; 78(2):171-86.
- [3] Torres, L, Hernandes, JLJ, Almeida, GB, Gomide, LB, Ambrosio, V, Fernandes, MIM. Avaliação clínica, nutricional e espirométrica de pacientes com fibrose cística após implantação de atendimento multidisciplinar. J Bras Pneumol. 2010; 36(6):731-7.

- [4] Leão, LL, Aguiar, MJ. Newborn screening: what pediatricians should know. J Pediatr. 2008; 84(4):80-9.
- [5] Dalcin, PTR, Silva, FAA. Fibrose cística no adulto: aspectos diagnósticos e terapêuticos. J. Bras. Pneumol. 2008; 34(2):107-17.
- [6] Gibson, LE, Cooke, RE. A Test for Concentration of Electrolytes in Sweat in Cystic Fibrosis of the Pancreas Utilizing Pilocarpine by Iontophoresi. Pediatrics. 1959; 23(3):545-9.
- [7] Mattar, ACV, Gomes, EM, Adde, FV, Leone, C, Rodrigues, JC. Comparison between classic Gibson and Cooke technique and sweat conductivity test in patients with and without cystic fibrosis. J Pediatr. 2010; 86(2):109-14.
- [8] Dean, M, Santis, G. Heterogeneity in the severity of cystic fibrosis and the role of CFTR gene mutations. Hum. Genet. 1994; 93:364-8.
- [9] Farrell, PM, Rosenstein, BJ, White, TB, Accurso, FJ, Castellani, C, Cutting, GR, Durie, PR, Legrys, VA, Massie, J, Parad, RB, Rock, MJ, Campbell, PW. Cystic Fibrosis Foundation: Guidelines for diagnosis of cystic fibrosis in newborns through older adults. In: Cystic Fibrosis Foundation Consensus Report. J Pediatr. 2008; 153:S4e14.
- [10] Costello, CT, Jeske, AH. Iontophoresis: Applications in Transdermal Medication Delivery. Physical Therapy. 1995; 75(6):554-63.
- [11] LeGrys, VA. Sweat testing for the diagnosis of cystic fibrosis: practical considerations. J Pediatr. 1996; 129:892-7.
- [12] LeGrys, VA, Yankaskas, JR, Quittell, LM, Marshall, BC, Mogayzel, PJ Jr. Cystic Fibrosis Foundation. Diagnostic sweat testing: the Cystic Fibrosis Foundation guidelines. J Pediatr. 2007; 151, p. 85-9.
- [13] Jadoul, A. Bouwstra, JA, Preat, V. Effects of iontophoresis and electroporation on the stratum corneum: review on the biophysical studies. Adv Drug Deliver Rev. 1999; 35:89-105.
- [14] Gratieri, T, Gelfuso, GM, Lopez, RFV. Princípios básicos e aplicação da iontoforese na penetração cutânea de fármacos. Quim. Nova. 2008; 31(6):1490-8.
- [15] Huang, YY, Wu, SM, Wang, CY, Jiang, TS. Response surface method as an approach to optimization iontophoretic transdermal delivery of pilocarpine. Int J of Pharm. 1996; 129:41-50.
- [16] Reinauer, S, Neusser, A, Schauf, G, Hölzle, E. Iontophoresis with alternating current and direct current offset (AC/DC iontophoresis): a new approach for the treatment of hyperhidrosis. British Journal of Dermatolog. 1993; 129(2):166-9.
- [17] Bagniefski, T, Burnette, RR. A comparison of pulsed and continuous current iontophoresis. J. Controlled Release. 1990; 11:113-22.
- [18] Vieira Jr, FU, Canavezi, PJC, Disserio, V, Costa, ET. Dispositivo estimulador de sudorese pelo método de iontoforese: projeto, construção e testes preliminares. Em: Anais do XXIII Congresso Brasileiro de Engenharia Biomédica; 2012, 01-05 Outubro, Ipojuca, Brasil. 2012. p.1396-1400.
- [19] Gomez, C.C.S. Avaliação das correntes contínua pulsada e contínua constante pelo método de iontoforese por pilocarpina em indivíduos com e sem fibrose cística [Dissertação]. Campinas: Universidade Estadual de Campinas; 2014.